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Objective
The authors sought to train an artificial neural network to predict early outcomes after orthotopic
liver transplantation.

Summary Background Data
Reliable prediction of outcomes early after liver transplantation would help improve organ use and
could have an impact on patient survival, but remains an elusive goal. Traditional multivariate
models have failed to attain the sensitivity and specificity required for practical clinical use.
Alternate approaches that can help us model clinical phenomena must be explored.
One such approach is the use of artificial neural networks, or connectionist models. These are

computation systems that process information in parallel, using large numbers of simple units,
and excel in tasks involving pattern recognition. They are capable of adaptive learning and self-
organization, and exhibit a high degree of fault tolerance.

Methods
Ten feed-forward, back-propagation neural networks were trained to predict graft outcomes,
using data from 155 adult liver transplants. The data included information that was available by the
second postoperative day. Ten separate training and testing data subsets were prepared, using
random sampling, and the ability of the different networks to predict outcomes successfully was
evaluated using receiver operating characteristic (ROC) curve analysis.

Results
Four of the networks showed perfect discrimination, with an area under the ROC curve (A,) of 1.0.
Two other networks also had excellent performance, with an A, of 0.95. The sensitivity and
specificity of the combined networks was 60% and 100%, respectively, when using an output
neuron activation of 0.6 as the cutoff point to decide class membership. Lowering the cutoff point
to 0.14 increased the sensitivity to 77%, and lowered the specificity to 96%.

Conclusions
These results are encouraging, especially when compared to the performance of more traditional
multivariate models on the same data set. The robustness of neural networks, when confronted
with noisy data generated by nonlinear processes, and their freedom from a priori assumptions
regarding the data, make them promising tools with which to develop predictive clinical models.
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Outcome prediction is becoming increasingly more
important in medicine, for reasons that range from the
purely academical to the overtly fiscal. Predictive models
must perform well when applied to individual cases, or
clinicians will be reluctant to use them, and any theoret-
ical benefit in terms of improved patient care and re-
source use will go unrealized.

Liver transplantation is one field that would benefit
greatly from such models. We must be able to determine
early whether a transplanted organ is destined to fail, be-
cause early intervention can ameliorate the high morbid-
ity and mortality rates that accompany retransplanta-
tion. Also, the large discrepancy between the increasing
demand for organs and their stagnant supply,' coupled
with the high cost of these procedures,2 make it impera-
tive that we optimize the use ofsuch scarce resources.

Early prediction of outcomes after liver transplanta-
tion still is not feasible, except in general terms. The rea-
sons for this are complex, and may involve a combina-
tion ofour incomplete understanding of all the processes
involved, relatively small patient samples, and the use of
modeling techniques poorly suited for the task.3

Artificial neural networks are computation systems,
implemented either in hardware or software, that mimic
the computation abilities of biologic systems by using
large numbers of simple, interconnected, artificial neu-
rons. These neurons take information from sensors or
other artificial neurons, perform simple operations on
the data, and pass the results on to other artificial neu-
rons. They exhibit adaptive learning, self-organization,
and fault-tolerance. They also can operate in real time,
and are inserted easily into existing technology.4

Neural networks have been used to solve problems in
a wide range of fields, such as handwritten character rec-
ognition,5 sonar signal processing,' image reconstruc-
tion,7 robotics,8 and nucleic acid sequence prediction.9
Although their development was associated closely with
the neurosciences and they have been used extensively to
model the nervous system at different levels ofcomplex-
ity,' "' neural networks have not made much of an im-
pact in clinical medicine. However, there is some evi-
dence that the well-known strengths of neural computa-
tion can be applied successfully in a clinical setting. 12-16
The purpose of this study was to train artificial neural
networks to predict patient and graft outcomes after liver
transplantation, using only data available in the early
post-transplant period, and to evaluate their predictive
performance. Our results suggest that neural networks
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are well suited for this task, and may perform better than
other, more traditional, approaches.

CASE MATERIAL AND METHODS

Patient Population

From January to August 1992, 155 adult patients un-
derwent 162 liver transplants at Pittsburgh's Presbyte-
rian University Hospital; 149 patients survived more
than 24 hours. These patients were entered in a pro-
spective study aimed at analyzing factors that could be
used for early prediction of outcomes after liver trans-
plantation, and their progress was followed for 3 months.
A detailed description of that study has been reported.3
One patient died ofintractable supraventricular arrhyth-
mias, 23 days after surgery, that resulted from trauma to
the atrial conduction system after a direct anastomosis
between the donor suprahepatic vena cava and the recip-
ient's heart. At the time ofdeath from cardiac arrest, the
graft function was normal. This patient was excluded
from the analysis, leaving 148 patients undergoing 155
separate transplant events, which form the basis for this
report.

Because these data were obtained during an observa-
tion study, in which patients were treated according to
our established clinical protocols, Institutional Review
Board approval was not necessary.

DEFINITIONS

Graft Failure

Graft failure is defined as patient death or retransplan-
tation, within 3 months of surgery, in patients that sur-
vived at least 24 hours after the operation.

Primary Non-Function

Primary non-function, lacking a technical complica-
tion, is a graft that never demonstrates evidence of initial
function, so that retransplantation must be carried out
within 2 weeks of the original operation, or the patient
succumbs to liver failure before a suitable graft can be
obtained.

Sepsis
Sepsis is systemic response to infection, manifested by

two or more of the following:

Temperature > 38 C or < 36 C;
Heart rate > 90 beats/min;
Respiratory rate > 20 breaths/min or PaCO2 < 32 torr;
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White blood cell count > 12,000 cell/mm3, < 4000
cells/mm3, or> 10% immature (band) forms.'7

Severe Sepsis
Severe sepsis is sepsis associated with organ dysfunc-

tion, hypoperfusion, or hypotension.'7

NETWORK INPUT PARAMETERS

Input parameters were chosen based on results ob-
tained in a previous study,3 our changing practice regard-
ing preoperative and postoperative clinical monitoring,
and the clinical judgment ofthe investigators. The input
patterns were formed by 19 parameters (Table 1). These
parameters can be subdivided in two groups, according
to whether the information was obtained on the day of
the transplant or the first 2 postoperative days.
The parameters from the day of the transplant in-

cluded the following: patient's age, serum bilirubin level,
serum creatinine level, prothrombin time, need for pre-
transplant mechanical ventilation, whether the index
transplant was a retransplantation, and the peak intraop-
erative serum lactate level. The same laboratory mea-
surements and the serum aspartate aminotransferase
(AST) were obtained postoperatively as part of the pa-
tient's routine biochemical monitoring. The need for

Table 1. PARAMETERS USED TO TRAIN
THE NEURAL NETWORKS

Age
Retransplantation
Need for preoperative mechanical ventilation
Preoperative total serum bilirubin
Preoperative serum creatinine
Preoperative prothrombin time
Peak intraoperative serum lactate
AST POD 1
Total serum bilirubin POD 1*
Serum creatinine POD 1 *
Serum lactate POD 1*
Prothrombin time POD 1*
FFP 1
AST POD 2*
Total serum bilirubin POD 2*
Serum creatinine POD 2*
Serum lactate POD 2*
Prothrombin time POD 2*
FFP 2

AST = aspartate aminotransferase; POD = postoperative day; FFP = whether the
patient received fresh frozen plasma in the previous 24 hours.

Vc - Vp
Relative change, calculated as v where Vc = current value and VP = value

on previous day.

Output Layer

*& Hidden Layer

Input Layer

Figure 1. Architecture of the neural networks used in the present study.
The network consists of three layers, with 19 neurons in the input layer, 2
neurons in the hidden layer, and 1 neuron in the output layer.

fresh frozen plasma during the preceding 24 hours also
was recorded to help interpret changes in the prothrom-
bin time.
Continuous variables were presented to the network as

both the initial value and measures representative ofthe
magnitude of change in the early postoperative period.
These consisted of the relative change in a given value
with respect to that of the previous day (Table 1). All
the available inputs were then scaled linearly between 0.1
and 1.0. Binary variables were given values of 0.1 or 1.0.
Ifan observation was missing, whether binary or contin-
uous, it was assigned the value of 0.

NETWORK ARCHITECTURE

We used a feed-forward, back-propagation network'8
with three layers. The input layer had 19 neurons; there
were 2 neurons in the hidden layer, and one neuron in
the output layer (Fig 1). The concept of a neuron, or
node, is a higher-level abstraction that encompasses both
certain values and a set ofoperations that are performed
on those values (Fig 2). The neuron receives an input
signal, or a set of input signals, coming from other neu-
rons or input devices. After adding the signals received
over one operating cycle, plus or minus a threshold
value, the result is passed through an activation function,
also known as a transfer function. The result ofthis is the
activation of the neuron, which is dependent function-
ally on the earlier summed inputs. This activation, or
output, is passed on by the neuron to all other neurons
to which it is connected, after multiplying it by values
that represent the connection weights.'9 Although there
are a number of functions that are suitable candidates,
the most popular transfer functions are the sigmoids,
which are continuous, real-valued functions whose do-
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Figure 2. Schematic representation of a single neuron. The neuron re-

ceives inputs from other neurons or input devices. The inputs (Al-AN) are

multiplied by the corresponding connection weights (Wij-WNJ) and then
totalled. A constant term (Oj), or bias, is then added, and the result is
passed through the transfer function. The output of the transfer function is
the output of the neuron. Adapted with permission from Maren AJ.19

main is the real numbers; their derivative is always posi-
tive, and their range is bounded. The most commonly
used sigmoid function is the logistic,

f(x) =
1 + e-X

which is the one used in this study. As can be seen from
Figure 1, the neurons are connected fully with those of
the preceding and subsequent layers, but there are no lat-
eral connections in this particular architecture.

LEARNING ALGORITHM

Feed-forward, back-propagation networks can learn
to perform a mapping between input and output pat-
terns. Their learning algorithm was described initially by
Paul Werbos,20 but it only became popular after the work
ofRumelhart et al.'8 Learning is supervised, and training
usually begins by setting the connection weights ran-

domly, although initial weights can be determined by
other methods. Then the network is presented with sets
of pairs of input and output patterns. The input pattern,
or vector, is used by the network to produce its own out-
put vector, which is then compared with the target vec-

tor. If they are different, it uses the back propagation of
errors, or generalized delta rule,2' to adjust the connec-

tion weights to minimize the error. This readjustment
can be performed after each training pattern is presented
("on-line" or continuous updating), or after a complete
set of training patterns have been processed, i.e., after
a completed epoch ("batch" or periodic updating), and
continues until the weights settle into a stable state.
When a network reaches a stable state, it is said to have
converged; however, convergence does not guarantee
that useful learning has taken place.

In its most basic form, back propagation is a gradient
descent algorithm. It can be slow for some applications,

and it scales up poorly as tasks become larger and more
complex.22 In this study, the algorithm used was quick-
prop, a variation of standard back propagation that has
been found to be much faster, and that appears to scale
much better.22 The implementation ofthe quickprop al-
gorithm used in this study (NevProp) was developed at
the Center for Biomedical Modeling Research, Univer-
sity ofNevada, Reno.

TRAINING STRATEGY
After preliminary experiments, a combination of net-

work architecture and learning parameters that consis-
tently produced satisfactory results was chosen. The 155
patterns were divided into two groups, a training set,
composed of 89% of the total patterns, and a testing set,
composed of the remaining 11% of the patterns. These
sets were made by random selection from each subgroup
(failed and successful grafts). Enough cases were selected
so that their proportions would be maintained approxi-
mately in both the training and testing sets. The order of
presentation ofthe training patterns, with respect to their
outcome, was also random. The network was trained on
the first set, and its performance was tested on the second
set. Training was continued until the best generalizing
weights were obtained.

Because an individual result could be skewed by a par-
ticularly favorable or unfavorable training/testing set
combination, ten different sets were made. The patterns
were selected at random. Then these were used to train
and test ten different networks, and their performance
was analyzed separately. All randomizations were per-
formed with the use ofa random number generator.

ANALYSIS OF NETWORK
PERFORMANCE

Receiver operating characteristic (ROC) curve analy-
sis23 was used to evaluate the performance ofthe trained
neural networks. The predictive performance was as-
sessed in terms of the true-positive and false-positive
fractions. The true-positive fraction is the fraction of ac-
tual failed grafts that were predicted correctly as failures
(i.e., the sensitivity). The false-positive fraction is the
fraction ofactual successful grafts that were predicted in-
correctly to fail (1 - specificity). The area under the ROC
curve (Az) was used as an index of performance. Calcu-
lations were done with software (Labroc 1) provided by
Dr. Charles Metz from the Department of Radiology,
University ofChicago.

RESULTS
There were 2945 data points (19 variables and 155

cases), ofwhich 18 (0.6%) were missing values, and were

Vol.219-No.4

WjlAj
-""10

WI



412 Doyle and Others

Table 2. INDIVIDUAL PERFORMANCE OF
THE TRAINED NEURAL NETWORKS, AS
MEASURED BY THE AREA UNDER THE

ROC CURVE (Az)

Network A,

1 1.0
2 0.89
3 0.86
4 0.87
5 1.0
6 0.95
7 0.88
8 0.95
9 1.0
10 1.0

An area of 1.0 indicates perfect discrimination.

one set, and performed ROC curve analysis on it. Figure
3 shows the resulting ROC curve for this combined set.
The area under the curve is 0.90. But more importantly,
the false-positive fraction remains at zero until the true-
positive fraction reaches 0.6. This can be better appreci-
ated in Table 3, in which the false-positive and true-pos-
itive fractions change as we vary the cut-offpoint that we
use to determine whether a graft will fail. If we set such
cut-off point at an output neuron activation of 0.6, our
false-positive fraction is zero and our true positive frac-
tion is 0.6. In other words, the specificity is 100% and the
sensitivity is 60%. Setting the cut-off point at a neuron
activation of 0. 14 makes the false-positive fraction go up
to 0.04, while the true-positive fraction increases to 0.77
(96% specificity and 77% sensitivity).

DISCUSSION

assigned a value of zero at the time of normalization. Of
155 grafts analyzed, 135 (87.1%) were successful accord-
ing to our definition, and 20 (12.9%) failed. Eleven fail-
ures were attributed to patient death, and the remaining
nine needed retransplantation. The specific causes of
failure were as follows:

Primary Non-Function. There were three cases of pri-
mary non-function.

Severe Sepsis. Nine grafts failed because of patient
death from severe sepsis 2 to 64 days after transplan-
tation.

Pancreatitis. One patient died of acute necrotizing
pancreatitis 30 days after transplantation.

Arrhythmias. One patient died after developing re-
fractory ventricular fibrillation, 3 days after surgery.
He had no predisposing risk factors.

Ischemic Injury. Five grafts were lost to severe isch-
emic injury 16 to 90 days after transplantation.

Rejection. One graft was lost to uncontrolled acute re-
jection, with severe central venulitis, 33 days after
transplantation.

Network Performance. Table 2 shows the individual
performance of the ten neural networks, as mea-
sured by the area under the ROC curve (A,). This is
a good indication of overall performance, with an
area of 1.0 indicating that a test has perfect discrim-
ination, and an area of 0.5 indicating that it per-
forms no better than chance.23 Four ofthe networks
showed perfect discrimination on the testing subset,
and two others had an A, of 0.95. The worst perfor-
mance was that ofnetwork #3, with an A, of 0.86.

To get an idea of the overall performance of the ten
neural networks, we combined all the predictions into

Although relatively new to clinical medicine, neural
computation has evolved slowly since 1943, when War-
ren McCulloch and Walter Pitts published a seminal pa-
per that profoundly influenced later computer scien-
tists.24 In it, they attempted to describe the inner work-
ings ofthe nervous system by using primitive computing
elements that were mathematical abstractions of actual
neurons and their connections, as they understood them
at the time. The so-called "McCulloch-Pitts neuron" is a
binary device (it can exist in one of two states) with a
fixed threshold; it receives excitatory or inhibitory inputs
and carries out its computations in discrete periods of
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Figure 3. Receiver operating characteristic (ROC) curve of the combined
neural networks.
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Table 3. COMBINED PERFORMANCE OF
THE 10 NEURAL NETWORKS AT VARIOUS
CRITICAL OUTPUT NEURON ACTIVATIONS

Cut-Off Value FPF TPF

0.99 0.0 0.20
0.79 0.0 0.40
0.60 0.0 0.60
0.14 0.04 0.77
0.02 0.15 0.84
0.01 0.33 0.88

FPF = false positive fraction; TPF = true positive fraction.

time. If the sum of its excitatory inputs exceeds the
threshold, the neuron becomes activated (i.e., "fires"). If
the neuron receives at least one inhibitory input, it will
remain inactive during that time cycle. Any finite logical
function can be duplicated by a given network composed
ofthese all-or-none neurons.
As important as their model was, the McCulloch-Pitts

neuron oversimplified neural electrical activity. More
importantly, the strength of the inputs did not change as

a function of experience; therefore, the network could
not learn. This latter deficiency was overcome by the ad-
vent ofthe perceptron,25 the first real artificial neural net-
work, which introduced several concepts currently in
use. The perceptron generated much enthusiasm be-
cause it was a learning machine that could be imple-
mented in the hardware available at the time, and it dis-
played adaptive behavior. It also could respond correctly
to input patterns it had not seen before, i.e., it could gen-
eralize. But it had serious limitations26 that led eventu-
ally to disenchantment with this line of research. Work
in this field came practically to a halt until public atten-
tion was drawn to it again by Hopfield in 1982.27
The connectionist approach has been used with suc-

cess in medical imaging and signal processing.28 Medical
imaging is an area that can naturally take advantage of
the pattern recognition capabilities of neural networks.
This includes interpretation of mammograms'6 or chest
x-rays29 based on features extracted by the reader, and
automatic tumor classification from analysis of ultra-
sound images ofthe eye.30 Signal processing applications
range from electrocardiogram trace classification3' 32 to
electroencephalogram analysis to determine depth of se-
dation. 14 The adeptness of neural networks at classifica-
tion tasks also has been exploited by some researchers to
try to develop clinical diagnostic systems as an alterna-
tive to more traditional expert systems. Mulsant used a

four-layer back-propagation network trained to diagnose
dementia, and achieved a 77% agreement with the diag-
nosis made by the clinicians.33 Furlong et al.,'3 trained a

network to classify patients in two groups, acute myocar-
dial infarction (AMI) and no infarction (no-AMI), based
on analysis of serial enzyme determinations. The net-
work made the correct diagnosis, as validated by autopsy
findings, in 92% ofcases ofAMI, and 67% ofcases ofno-
AMI. Baxt also used a neural network to diagnose AMI
in an emergency department, using historical data, phys-
ical signs, and electrocardiographic findings as inputs.'2
In a prospective comparison, physicians had a diagnostic
sensitivity of 77.7% and a specificity of 84.7%, whereas
the trained neural network had a sensitivity of97.2% and
specificity of 96.2%.
Outcome prediction can be viewed as another classi-

fication task, with individual patterns determining class
membership, and it is logical to try to use neural net-
works for this purpose. This approach already has been
found to be at least as good as Cox regression in predict-
ing breast cancer relapse,'5 and may be useful in iden-
tifying patients who will not survive to discharge after
cardiopulmonary resuscitation.34 Our results indicate
that neural networks can be trained successfully to pre-
dict patient and graft outcomes following liver transplan-
tation. These predictions can be made as early as 48
hours after the operation, and the system takes easily ob-
tained preoperative data and routine follow-up biochem-
ical information as inputs (Table 1). We trained ten
different networks ofthe same architecture, using differ-
ent training and testing data sets selected at random from
the same patient population and evaluated their perfor-
mance using ROC curve analysis. As shown in Table 2,
in four ofthose networks, the area under the ROC curve
was 1.0 - i.e., perfect discrimination. The combined
performance of the ten networks also was good, with an
area under the ROC curve of 0.9 (Fig. 3). Table 3 shows
the true-positive and false-positive fractions of the com-
bined networks while we vary the output neuron activa-
tion value that is used as a cutoff point to decide class
membership. Using an activation of 0.6 as a cutoff, the
true-positive fraction is 0.6 (60% sensitivity), and the
false-positive fraction is 0.0 (100% specificity). Ifthe cut-
off point is lowered to 0. 14, the true-positive fraction in-
creases to 0.77 (77% sensitivity), and the false-positive
fraction increases to 0.04 (96% specificity). This high de-
gree of specificity would make this model attractive in
clinical practice, where difficult and irreversible deci-
sions often are made in anticipation of poor outcomes.
These neuron activation values are not probabilities, al-
though they are often (loosely) interpreted as such.
Although preliminary, these results are encouraging.

Recently, we completed an analysis of early predictive
factors after liver transplantation, using the same patient
population that we report in this study.3 We found that a
number of parameters correlated with early outcomes,
but none were discriminating enough to make accurate
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predictions. Even when several parameters were entered
into stepwise logistic regression models, their predictive
performance was relatively poor, the best model having
a sensitivity of 75%, but a specificity of only 87%. Direct
comparisons between the two methods are not straight-
forward, especially because neural networks allow us to
use data in ways that often violate the underlying as-
sumptions of traditional statistical techniques. Also,
neural networks are much more robust when it comes to
handling noise, and allow us a certain degree of freedom
when confronted with missing data or simple measure-
ment errors. The incidence of missing values in this se-
ries was small, 0.6%, but this led to the exclusion ofsome
cases from the logistic regression model; the neural net-
works incorporated these cases after substituting zero for
the missing value. There are other strategies available
when dealing with missing values, such as substituting
the class mean or median, but because ofthe small num-
ber ofmissing data points, we did not attempt a compar-
ison between different methods. We plan to do such a
comparison in the future, together with the deliberate in-
troduction of noise, which can help train networks that
are less brittle under actual use. Considering the different
nature of the two methods, it is clear that neural net-
works compare favorably with logistic regression, espe-
cially because the performance ofthe networks was mea-
sured against test data sets (i.e., data not used during
training) and the performance of the logistic regression
model was estimated on the same data that was used to
generate the model.3

Standard multilayered feed-forward networks can ap-
proximate virtually any function of interest to any de-
sired degree of accuracy, provided enough hidden units
are available and the relation between input and target
patterns is deterministic, rather than stochastic.35 There
is a temptation, when setting up the network's architec-
ture, to add a large number of hidden neurons. This in-
creases the "processing power" of the network, and
makes it more likely that the network will learn the train-
ing set. However, it also increases the probability that the
network will soon learn all the relevant facts and start
learning the noise that is present in the data, which will
lead to poor generalization. We can overfit a neural net-
work, just as we can overfit a regression model. In light
of that, it also is encouraging that the architecture of the
network used in this study involved only two hidden
neurons. This is a good indication that the network is
using a few robust features to perform its classification,
rather than memorizing the idiosyncrasies present in the
data.
As powerful as connectionist models are, we must be

cautious before embracing them, and we must be aware
of their pitfalls. With relatively small data sets, leaving
out even a small number ofpatterns for subsequent test-

ing can have important consequences for network per-
formance. This is illustrated in Table 2, which shows that
with different training/testing data set combinations, we
obtain networks that perform very differently - some
discriminate test cases perfectly while others do not per-
form as well. We also can introduce a bias during train-
ing when we continue to train until the network per-
forms well on the testing set, in essence fitting the model
to the testing set. We will need larger training and testing
sets, and a separate cross-validation group, to confirm
our initial findings. We also will need a larger group so
that we can discriminate between patient death and sim-
ple organ failure. But even with these caveats, we believe
that neural networks constitute a group of promising
tools with which to build clinical prediction models.
Their freedom from a priori assumptions regarding the
data, their robustness in the face of noise, and their abil-
ity to solve nonlinear separable problems, make them
well-suited for the clinical arena.
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